Alain H. SCHUMACHER

White Paper

AHS - Random Number Generation

&

RPP - OTP

“ Randomly Permuted Positions - One-Time Pad”

Version 1.0
April 2006

AHS-RANDOM & RPP-OTP

Opening new doors in Cryptography



AHS-RANDOM & RPP-OTP / version 1.0 April 2006

Table of contents

INtrodUCHION ...ccoieiiiieeeee e e 3
About Randomness .............eeeeeeeeeiiiiiiiiiiieeeeee e 3
Infinite diStrIDULION ........cvvvviiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee e, 6
Description of the AHS-Random Number Generator .............. 7
The Pseudo-Random Number Generators (PRNG)
versus AHS-RNG ..., 10

TEST RESULTS / AHS-Random .........cccccoeeeiiiiiiiiiiiiieeeeeeee 13
RPP — OTP e 19
Test results / RPP - OTP ....oooooieeeeeeeeeeee e, 22
Glossary of terms used in AHS-Random .......c...ccooceeniiininnnene 23
APPENDIX A ..ottt 26
APPENDIX B ..o 27
APPENDIX C .ot 28
APPENDIX D .o 29
APPENDIX E ..oooiiiiieeeeeee et 30

Alain H. Schumacher Tel : +352 44 27 42 (office)

6, rue de la Forét Verte Fax : +352 45 48 04

L-7340 Heisdorf

Luxembourg sicapas @pt.lu

The information in this document reflects in a fair way the actual state of our research.
Copyright © 2006 Alain H. Schumacher — Heisdorf / Luxembourg

Patents pending for the AHS-Random method and RPP-OTP



AHS-RANDOM & RPP-OTP / version 1.0 April 2006

Introduction

This white paper is addressed to the open-minded. It introduces the invention of a new
method in the field of random number generation and its application in high-secure
cryptography. As a private non-academic researcher I have chosen the platform of the
International Exhibition of Inventions 2006 in Geneva to present my "baby" to the public. As
a member of the AAAS for more than 10 years, I adhere to the principles of strict scientific
correctness, so you do not have to fear any marketing arguments. In return I expect the reader
to refrain from any polemics based on prejudices, and to be willing to enter the fascinating
world of digital randomness.

In 1951 John von Neumann wrote his well-known statement: "Any one who considers
arithmetical methods of producing random digits is, of course, in a state of sin."

Many people seem to confuse arithmetical methods and computer-arithmetic. Does anyone
know an arithmetical method to win a chess competition? For sure, the answer will be no!
Nevertheless, even the World-Champion already lost some matches against chess-playing
computers, which were running without any doubt based on computer-arithmetics!

The goal of the development was to get a method which mimics the very basic principle of
coin flipping. In our case that means to leave the arithmetical methods and to find a way to
determine one or zero with a 50/50 chance for every bit. So the leitmotiv was: "Give chance
a chance", in German: "Gib dem Zufall eine Chance".

For cryptography the result opens the door to different new solutions, and the quality of the
randomness seems to be in the green area, if we evaluate the test-results from the generally
admitted test-suites like the NIST. In the second field of potential use, the scientific
simulations, only time will tell about the usefulness of the method, as the scientific
community first has to come to an objective opinion. In the one simulation test we ran, a
simulation of 10 series of 3.6 billion "birthday-paradox" with 23 persons, the AHS-Random
generator performed well, compared to the MT19937.

About Randomness

If you are a collector and enjoy having something that nobody else on earth will possess, you
may do the following :

Take a coin, flip it 256 times and note every outcome with “H* for head and “T” for tail. In
the end you will get a string similar to this one :

THTHTTTHT THT THHTHT THHTHTHT THHTHHHTHT THHHT T T THHHHHTHHT THT TTHHHTTT
HTHTTTHHHHT TTTHTHHHT TTHT TTHTHHHTHHTHTHTHHT TTT T THHHHHTHHT THHTHTHT
THTTHHT THHHHT THHTHTHTHT TTHHHTHT THHHT TTTT THHHHHTHHT THHT TTHT THTTTH
HTHTHT THHT THTHTHHT THHT TTTTHHHHHT TTTHHTHHHT TTTHT TTHT TTTTTTHTTHHT T

By replacing every H with a zero, and every T with a one, the string looks like this:

1010111011011001011001010110010001011000111100000100110111000111
0101110000111101000111011101000100101010011111100000100110010101
1011001100001100101010111000101100011111100000100110011101101110
0101011001101010011001111100000111100100011110111011111110110011
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If you are familiar with computer-arithmetic you recognize that you have produced a bit-
string of 256 bit length, and that we may convert this 256-bit number to a decimal number. In
our example this will give the number

79086541248287290464391135115232873378785628640428536280431363714368868695987

This number is one out of all the possible numbers between 0 and 1.15792...%10exp77.
Considering that the total of atoms of the known universe, with an estimated 50 billion
galaxies containing each around 100 billion stars, is in the region of 10exp79, you will admit
that the number you just produced by assembling 256 random bits is most likely a unique
number that never showed up elsewhere in the world.

In cryptography the uniqueness of keys is an important requirement for unbreakable privacy.

The relatively easy way to get a unique 256-bit random number is due to the fact that all the
sub elements, i.e. the bits, are independent from each other, as the coin has no memory to
remember the outcome of the previous results, but any new flipping gives you a new 50/50
chance for head or tail (if you use an unbiased, so-called “fair” coin).

Unfortunately this is not true if you use your computer and the workhorse for pseudo-random
number generation, the Linear Congruential Generator (LCG). This Pseudo-Random Number
Generator (PRNG) uses a simple arithmetical function to calculate numbers that give an
appearance of randomness, but are missing fundamental properties of true random numbers.

To illustrate the problem we may present a reduced model, i.e. a LCG running in an abnormal
limited number space from O to 511. This will easily demonstrate the problem on a
microscopic level in the same way as it exists on a normal level. The maximum of 511 plus
one gives us a modulus (m) of 512. Let’s choose the value 97 as multiplier (a) and the value
13 as increment (c). With these parameters we will get the maximum of possible numbers
(the period) of 512. The calculation to be done is the following:

Xnew = (Xold * a + ¢) modulus m

Modulus m means that we divide the result by 512 and take the remaining as random number.
To start the LCG, we have to select a (random) value, named seed. Let’s choose 312 as seed,
and store this value to the register named X. By producing the next 520 random numbers in
the described way we get the following sequence (from left to right) :

69 50 255 172 313 166 243 32 45 282 231 404 289 398 219
264 21 2 207 124 265 118 195 496 509 234 183 356 241 350
171 216 485 466 159 76 217 70 147 448 461 186 135 308 193
302 123 168 437 418 111 28 169 22 99 400 413 138 87 260
145 254 75 120 389 370 63 492 121 486 51 352 365 90 39
212 97 206 27 72 341 322 15 444 73 438 3 304 317 42
503 164 49 158 491 24 293 274 479 396 25 390 467 256 269
506 455 116 1 110 443 488 245 226 431 348 489 342 419 208
221 458 407 68 465 62 395 440 197 178 383 300 441 294 371
160 173 410 359 20 417 14 347 392 149 130 335 252 393 246
323 112 125 362 311 484 369 478 299 344 101 82 287 204 345
198 275 64 77 314 263 436 321 430 251 296 53 34 239 156
297 150 227 16 29 266 215 388 273 382 203 248 5 498 191
108 249 102 179 480 493 218 167 340 225 334 155 200 469 450
143 60 201 54 131 432 445 170 119 292 177 286 107 152 421
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402 95 12 153 6 83 384 397 122 71 244 129 238 59 104
373 354 47 476 105 470 35 336 349 74 23 196 81 190 11
56 325 306 511 428 57 422 499 288 301 26 487 148 33 142
475 8 277 258 463 380 9 374 451 240 253 490 439 100 497
94 427 472 229 210 415 332 473 326 403 192 205 442 391 52
449 46 379 424 181 162 367 284 425 278 355 144 157 394 343
4 401 510 331 376 133 114 319 236 377 230 307 96 109 346
295 468 353 462 283 328 85 66 271 188 329 182 259 48 61
298 247 420 305 414 235 280 37 18 223 140 281 134 211 0
13 250 199 372 257 366 187 232 501 482 175 92 233 86 163
464 477 202 151 324 209 318 139 184 453 434 127 44 185 38
115 416 429 154 103 276 161 270 91 136 405 386 79 508 137
502 67 368 381 106 55 228 113 222 43 88 357 338 31 460
89 454 19 320 333 58 7 180 65 174 507 40 309 290 495
412 41 406 483 272 285 10 471 132 17 126 459 504 261 242
447 364 505 358 435 224 237 474 423 84 481 78 411 456 213
194 399 316 457 310 387 176 189 426 375 36 433 30 363 408
165 146 351 268 409 262 339 128 141 378 327 500 385 494 315
360 117 98 303 220 361 214 291 80 93 330 279 452 337 446
267 312 69 50 255 172 313 166 243 32

The 512" value is our original seed, and from the next position on we replicate the first values
produced. This is inevitable as the same calculation has to produce the same result on a
computer. The biggest anomaly is the fact that every possible number between 0 and 511
appears one time. This is contrary to the characteristic of true random numbers.

If we do the same test with real random numbers, then approximately 36.75 % of the possible
numbers will not appear, 36.82 % will appear once, 18.41 % will appear twice, 6.12 % will
appear three times, 1.52 % four times, 0.30 % five times, and so on.

Let’s do a small simulation: first we discard all the numbers from 365 to 511. If we now
consider 0 to represent January 1st, 1 to represent January 2nd, and so on up to 364
representing December 31st, we obtain a series of birthdays (to simplify we leave out
February 29th). Now we are able to simulate the question of the so called “birthdays-
paradox”: How many people have to be in a room for the probability to exceed 50% that at
least two persons share the same birthday, assuming that the birthdays are equally distributed
over the 365 days of the year?

The erroneous expression “paradox” is generally used because most people hardly believe
that from 23 persons upwards it is more probable to have at least 2 persons with the same
birthday than not to, even though it is only basic probability theory.

By simulating this problem with the produced pseudo-random numbers, a real paradox will
appear. With all the possible seeds we shall use, we always find out that we need 366 persons
in a room before we will have two sharing the same birthday!!

This test illustrates on a microscopic scale the problem that we encounter in bigger
simulations with simple pseudo-random number generators like the well-known LCG. That is
the reason why today more sophisticated PRNGs like the MT19937 are used for serious
simulations. In the test-series you will find one test based on the simulation of this problem
with different PRNGs and the AHS-RNG.
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Infinite distribution

An infinite random sequence (by the definition of randomness with an infinite distribution)
has, in a strict mathematical sense, to include all possible finite sequences. So we have to
conclude that an infinite random sequence has to include the "Faust I" from Goethe. In our
opinion this strict mathematical approach of infinity is very disturbing when dealing with real
world random numbers. To explain this opinion we may calculate the following example:

Let's assume, just theoretically, that we are able to fill the whole known universe (let's take 46
billion light-years diameter for granted) completely with well-known quantum random
generators, generating each 4 Megabit/sec of true random bits.

As these small units measure only 51 x 44 x 13 mm, we can store 1.4783 * 10exp93 units in
the whole universe, if we don't take care of power generation and signal-lines. If we operate
these quantum random generators for 1000 years, they will have produced together
approximately 1.8674 * 10exp1 10 random bits. Coming back to "Faust I", we would find out
that, with a lot of luck, all these bit-generators randomly found only the first 50 characters of
Goethe' play.

For this reason we propose, when dealing with real world random number generation, to
pragmatically define infinite randomness as the possibility to get, by producing the next 256
bits, any possible combination with equal probability, including the previous one produced.
By logical extension we thereby also cover the theoretical infinite sequence. This definition
will allow us to do empirical tests on reasonable subsets in the range of 10 to 100 Terabits.
The confidence in a given random-number generator will rise if we share (or centralize) the
results from identically defined tests. The probability theory gives us only an answer in form
of the probability for different possible outcomes, and thus it is scientifically incorrect to
judge a single result, even when the obtained result falls in the one to a million region of the
probability. Only the collection of a multitude of results will give us a high confidence.

As we will see in the section on test-results, after running different tests on more than 350
Terabits, we have not yet found any indication against our presumption that AHS-RNG has
an infinite random distribution. As explained, the sole fact that we have not yet found
complete chapters of "Faust I" is not a proof against this presumption.

Infinite distribution and crypto applications

In cryptography you may want to have random numbers with specific properties. For example
you may want 256-bit keys having between 110 and 144 "1"s and having at least 110 changes
0/1 and 1/0. Every good number generator will occasionally produce a substring of 30 or
more zeros or ones. That's part of its job, and it cannot be blamed for it. It is the user's
responsibility to check produced random numbers for these properties, and to simply discard
the ones not fulfilling the requirements. But be aware that, by doing so, you reduce the
number of possible combinations, and take care that the remaining variants satisfy your
cryptographic needs.
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Description of the AHS-Random Number Generator

The AHS-RNG is based on the principle that flipping a “fair” coin is a Bernoulli trial with a
probability of exactly 50% to get a 0-bit or a 1-bit (corresponding to head or tail).

Let’s forget a few papers published in the past, putting in doubt the presumption that by
physically flipping a coin the outcome will be exactly fifty/fifty. The decisive fact in coin
flipping is the independence of the next outcome from the previous results.

By combining different sources of randomness the AHS-RNG mimics by software the
principle of coin flipping. So it is correct to call it a “fair coin simulator”.

In order to get any of the theoretically possible combinations for a bit-string of a given length
(including the last one produced) with the same probability, we have to abandon the
arithmetical approach of the existing PRNGs. The basic “endless” possibilities in the AHS-
RNG come mainly, but not exclusively, from a random table named Bit-Fishing-Table (BFT).
The size of this table, normally a number of bits of an exponent of 2, may vary from as small
as 8 Kbyte to a technical limit (for 32-bit processors) of 512 Megabyte. The table has to
contain an equal number of one- and zero-bits to guarantee the same probability for the
production of ones and zeros. The table has to be random for unpredictability. (See the term
BFT in the glossary for more details)

To generate the random numbers, the AHS-generator processes bit-position by bit-position,
with a 50 % probability to get a one or a zero. The first step per bit is to produce a random
address (by combining different sources of randomness) in the range of the size of the BFT,
and the second step is to take this bit from the random table and to add it to the random
number under construction.

In the first instance, to run an engine, we need fuel. For this purpose the AHS-RNG uses the
classical pseudo random number generator LCG, in a 64-bit version. Let’s clarify
immediately that the output of the AHS-RNG is in no way correlated with the random
numbers produced by the LCG. The main characteristic of this LCG is the fact that 2exp64
different and unique values of 64 bit show up in a random, but predictable order. These facts,
against the principles of true randomness, are used advantageously in the AHS-RNG to
guarantee the uniqueness of strings with a minimum length of 2exp64 bits per seed. Thereby
we will be sure to get a production of at least, without any other possible interventions,
2exp128 bits per individual BFT (as we have 2exp64 possible seeds, and every seed will
produce different random-strings of at least 2exp64 bits).

We strongly recommend to use the following trick in the seeding procedure: After the
transmission of the seed-value to the seeding function, we add by program 64 bits from
arbitrarily chosen positions of the BFT. Thus a possible attacker will not have the openly
transmitted seed-value at his disposal.

The seeding procedure of the AHS-RNG is an important part of the AHS-RNG and needs a
few hundred of the first pseudo-random values produced by the LCG. In the seeding
procedure we have to distinguish between two different goals. The first goal is to calculate the
values for the 16 basic modifiers (BM). These basic modifiers are calculated by combining in
8 registers some information from the LCG and the BFT, and in the other 8 registers the
unmodified values from the LCG. By combining LCG and BFT we exclude the possibility to
guess the values from these registers by knowing the seed, and by not modifying the other
half we guarantee the uniqueness per seed. These values will stay unmodified until the next
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re-seeding.

The second goal is to “fill the pipe”. This means that we calculate randomly, by extracting
bits from the BFT with the help of the LCG pseudo random numbers, the starting values for
different registers needed in the normal production cycle. This concerns the four 32-bit feed-
back-modifiers (FBM), the four 32-bit basic-randomness-values (BRV) and the register with
the last 32 bits produced.

As optional speed-optimization strategy in our test-implementation we filled an additional 32-
bit register with a random value to be considered as chosen part of the BFT in the first cycle.
In the first production cycle we use this one and we start the request for the next one to be
used in the second cycle, always one cycle in advance. By doing so we partly avoid nasty
delays in accessing the BFT in the memory, as the processor can do some work during the
waiting period.

Once this seeding procedure completed, we can start “flipping the coin”. The basic cycle of
the AHS-generator is the production of 4 bits. This is due to the method used for the
calculation of the final address of the bit to be selected from the BFT. For speed optimizing
purposes, we chained two basic cycles in our test-implementation to generate 8 bit numbers in
one round.

The production of one bit goes as follows:

- we calculate the next LCG number

- we recalculate one BRV (cyclically one of the four) by XOR-ing the upper 32 bits
from the LCG with one FBM (cyclically one out of the four)

- we transfer, by an “AND” instruction, selected bits, defined in a specific Final-
Address-Assembling-Parameter (FAAP), from the BRV1 to the Final-Address (FA)
register

- we add, based on the next FAAP, some bits from the BRV?2

- we add, based on the next FAAP, some bits from the BRV3

- we add, based on the next FAAP, some bits from the BRV4

- after these operations we have the address of the bit to extract from the BFT, and we
will add this bit to the random number under construction

After executing one, two, three or four times the production of 8 bits (for an 8 bit, 16 bit, 24
bit or 32 bit unsigned integer), we have to leave this main-cycle to update the table of the
FBMs. We transfer FBM3 to FBM4, FBM?2 to FBM3 and FBM1 to FBM2. The FBM1 is
recalculated by XOR-ing the last 32 bits produced with a Basic Modifier (BM) determined in
a cyclic way.

The next production cycle for 1, 2, 3 or 4 bytes may now start again. If high-speed production
of larger quantities of random numbers is needed, we recommend of course to produce 32 bits
at a time. On the other hand the reader will easily understand from these explications that
changing from one request of 32 bits to two requests of 16 bits in a random way (based
maybe on the clock-ticks or the elapsed time) allows us to produce non-reproducible random
numbers, as we advance differently in the Basic-Modifier cycle, and as the last 32-bit register
will not be the same. For this possibility we use the term run-time randomness.

As explained we will get 2exp64 different bit-strings (one per different seed of the LCG) of
2exp64 bits each. For different BFTs we will get of course completely different strings. One
might now argue that this means to have only 2exp58 unique 64-bit integers per seeding for a
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given table before we run out of the period of the LCG.

Effectively, after the first cycle of the LCG, there exists a small possibility that we may enter
by chance in the same state of the FBMs. But we don’t have to worry. First, it is easy to
calculate that even with a production of 1 billion 64-bit integers per second we have to wait
more than 9 years before this will happen. Secondly, in case we may encounter one day this
problem, we can force an automatic new seeding after the production of 2exp64 bits. If we
want to produce large amounts of random numbers by parallel-processing on a
multiprocessor-system, we can chose to take a different BFT per processor, or to take one
BFT and use a different seed per processor.

Other possibilities exist too, like the run-time randomness or the automatic changing of the
FAAPs etc, so we think that it is not appropriate to try to calculate a periodicity as we would
need to do if we worked with PRGNs. The AHS-RNG will offer for every speed the
possibility to produce never seen random numbers (if we consider 256 bit-length) and never
repeating, limited only by the basic laws of probability. We may get them as reproducible or
as non-reproducible as we want them to be.

For truly non-reproducible random numbers for crypto applications we need a specially
designed microcomputer which automatically increases the seed at every power-up, and has a
secret BFT stored on the same chip in a secured memory, unreadable from outside. This
represents the famous black box producing unpredictable random numbers which cannot be
reproduced. If we store a random value as first seed together with the BFT, and the operating
system sends the time at every boot to randomly increase the seed, even an attacker who
managed to get hands on the BFT would not be able to find out the seeds used in the past.

Concerning the achievable speed, we have measured up to 124 Megabit per second (that
is 15,5 Megabyte per second) with an 8 KB BFT and 115 Megabit per second with a 64
KB BFT, on an Intel Pentium 4 with EM64T at 3 GHz. On a small ARM 9 running at
180 MHz the rate obtained was 1,3 Megabit per second. The programming language is
C-99, without hand-coded assembler optimization.

Due to the differences in the access speed between the caches and the main memory, the
speed decreases rapidly if we use very large BFTs.

The creation of the BFT

To create the BFT we may use any satisfactory method. After generating the whole length of
the table, we have to trim the table, in order to reach the same number of ones and zeros. First
we count the number of ones, and calculate how many ones are missing, or if we have a
surplus. We then choose, with the help of random numbers, random bit-positions. If the bit on
this position is of the type with a surplus, we change the bit, otherwise we don't. We repeat
this procedure until the number of ones and zeros is equal.

In our test-implementation we use a method to create the BFT without the help of an other
RNG. The first generation is created with the LCG, and then we increase the generation
several times, up to 100 or 200 generations, using the AHS-RNG. If we have a running AHS-
RNG at our disposal we may as well use its output. For special cases a random generator
based on physical quantum processes can be used.
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The Pseudo-Random Number Generators (PRNG) versus AHS-RNG

In order to support our thesis that the AHS-RNG must not be considered as a pseudo-random
number generator, we list the characteristics of PRNGs and compare them against the AHS-
RNG. It is true that not every PRNG may have all these characteristics, but normally at least a
few.

Infinite distribution

We may define, in a pragmatical approach, the infinite distribution as the possibility that the
next 256 bit-string to be produced has the same probability to be any out of all the
theoretically possible combinations, including the last one produced. None of the currently
known PRNGs fulfills this condition, and this fact is generally admitted. This is the reason
why PRNGs are considered to produce only finite sequences of random numbers. Even if it is
hard to prove, our test-results and the conception of the AHS-RNG let us presume that it is
most likely true that the AHS-RNG is able to produce infinitely distributed random numbers.
Any possible proof falsifying this assumption is of course always welcome.

Binomial distribution

This distribution is very useful to check if the probability for smaller bit-strings, like 16 bits
up to 80 bits, is in concordance with the probability theory for independent trials. To give an
example, let’s admit that you want to randomly distribute 100'000 times a dollar to 100'000
persons. If you always determine the person to get a dollar in a randomly and independent
way, approximately 36788 persons will stay with empty pockets, while a few ones will get
six, seven or even eight bucks. This may appear very unfair, but such is live, and the laws of
probability. The probability to get eight bucks is smaller than 1 to 100'000, so probably only
in nine cases out of ten we will see one person getting eight bucks.

If you repeat this generosity infinite times, then of course one day there may be a case where
one person will get the 100'000 bucks and 99'999 persons will stay with empty pockets. But
by dealing with real world random numbers, the concept of infinity is very disturbing. Let’s
suppose in our example that you want to continue with your experiment until you get the case
of one person receiving 25 bucks. The law of the binomial distribution tells us that with a
very high probability your pockets (and bank accounts!) will be empty before you reach your
goal, as the 50 % probability for this case is in the range of 200 billion billion trials.

In our tests the AHS-RNG performed well with trustable results, while the classical
workhorse of the PRNGs, the LCG, was showing the known weakness, especially in the test
of sorting 30 billion 64-bit strings. On the other hand the sophisticated PRNG named
MT19937 performed well in this test.

Predictability, forward and backward

Except for specially designed pseudo-random bit generators for cryptographic applications,
the PRNGs produce random numbers which are forward and backward predictable. As the
random numbers are the result of a mathematical function, knowing one small sequence of
the numbers allows you to calculate the previously produced number, as well as the next
sequence to show up.

Due to the concept of the AHS-RNG, it is absolutely impossible to calculate, based on the
knowledge of one part of the sequence, the unknown string before or behind the known part,

10
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as long as the bit-fishing-table is secret.

If you know the BFT, but not the seed, you are not able to calculate the seed, but you would
have to try out maybe all of the 2exp64 possible seeds to find the one used. If you know the
seed and the BFT, but don’t have the FAAP values, in case that we use randomly calculated
FAAPs, then you would need to try out all the billions of billions of possible FAAPs.

The secrecy of the seed

The first strong recommendation for a limited use of some PRNGs in cryptography is to use
only a seed based on an external random source, and to keep this seed secret. In case of the
AHS-RNG nothing of the above applies. In cryptographic applications we may use the seeds
1, 2, 3 and so forth, and even show it to a potential malicious adversary. This means that we
may send an e-mail to someone with whom we share a secret BFT, and are able to indicate in
the subject line the seed used for encrypting the e-mail.

Periodicity

In principle, all of the PRNGs have a periodicity, after which they start to repeat the same
random numbers. This is due to the mathematical function used in the PRNGs. For a classical
32-bit LCG we may prove this fact in practice in a few minutes on a modern desktop
computer, while for a 48-bit or 64-bit version this task is more difficult, due to the much
longer period. For the AHS-RNG we are not concerned with this problem. Every version of
the BFT will guarantee a unique production of 2exp64 different strings of the length of 2exp64.
As indicated in the description of the AHS-RNG, there exist different possibilities to exceed
these values, e.g. run-time randomness and the change of the FAAPs.

The easiest way, if one day we might need to exceed the length of 2exp64 bits to produce, is
the automatic new seeding with the old seed plus one. To illustrate the volume representing
those 2exp128 random bits, we may calculate it in more common terms. Let’s burn this
volume of information on the new high-density DVDs with a supposed capacity of 50
Gigabytes per DVD. One DVD weighs 15.5 grams. After burning the DVDs, we stock them
in railway wagons, 50 tons in a wagon of 10 meter length. In the end we would have
produced some 1.318 * 10exp22 tons of DVDs, and they would fill a train of the length of
65'929 billion times the length of the equator. As we have this quantity of secret random
numbers for every different BFT, it proves that periodicity is really not a problem for the
AHS-RNG.

Deterministic function of the seed

“The outputs of a PRNG are typically deterministic functions of the seed; i.e., all true
randomness is confined to seed generation. The deterministic nature of the process leads to
the term “pseudorandom”. Since each element of a pseudorandom sequence is reproducible
from the seed, only the seed needs to be saved if reproduction or validation of the
pseudorandom sequence is required” (point 1.1.4. paragraph 2 of the NIST Special
Publication 800-22 A statistical test suite for random and pseudorandom number generators
for cryptographic applications).

In the case of the AHS-RNG the seed plays a role, but not the major one, and absolutely not
the only one. The main source of randomness is the bit-fishing-table (BFT). The seed, the
FAAPs and the possible outside randomness introduced during the run of the generator by the
run-time randomness are supplementary sources of randomness.

11
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The deterministic nature of the process

In the literature one finds the opinion that computers, as deterministically working machines,
are not be able to produce “true” random numbers, and thus always produce pseudo-random
numbers. At the same time these authors support their statement by indicating the
characteristics of the known PRNGs. It seems that historically the prefix “pseudo” was not
introduced in order to distinguish between computer generated random numbers and those
generated by means of other deterministic physical processes, but in order to indicate that the
random numbers generated by known PRNGs like the LCG are missing some of the
characteristics of true random numbers.

By the way, anyone who is familiar with the generation of random numbers by a physical
process knows that there exists no physical process for simulating a “fair” coin with a
statistically correct distribution of ones and zeros. There are some algorithms to correct this
with mathematical functions, executed normally by means of a computer program. Therefore,
one might wonder if it is correct to consider these numbers as “true” random numbers, as
their final values are normally calculated by a deterministically working computer, using one
out of more possible mathematical functions. Depending on the algorithm used, the same
original sequence will result in different “true” random numbers.

As special case we may consider the random numbers generated by a physical quantum
process. Who will disagree with the statement that for example flipping a coin is basically a
physically deterministic process? But concerning the question of quantum processes, at this
moment a large majority backs the thesis that the quantum effects are of “true” randomness.
But regardless whether this thesis will stand for ever, random numbers produced this way
always need some post-treatment to become useful for practical purposes.

We think that the real question is a more philosophical one. We have to decide if randomness
is only a question of momentary events inter-depending in such a way that the outcome may
not be calculated in advance, but may only be calculated or estimated with a certain
probability. Or may we conclude that randomness is a product of historical and momentary
events? In the case of the optical quantum generator, the historical process of manufacturing
the product certainly plays a role, and as its output is declared true random, we cannot refute
this second interpretation.

Applied to the AHS-RNG, we may conclude that the historical event of choosing a given
BFT and the momentary event to choose a specific seed and/or FAAP, together form the
randomness, and that the deterministic calculation of the computer is only the transformation
of this intrinsic randomness, and doesn't influence the randomness in any way.

Just to remind: with an 8 KB BFT we have more than 10exp19'725 different possibilities, and
with a 64 KB BFT there are more than 10exp157'823. The momentary event in form of seed
and FAAP offers a supplementary randomness of 10exp39 possibilities. For all who think that
this is not enough randomness, the possibility exists to add run-time randomness during the
run of the generator (see run-time randomness in the glossary). Therefore we hope that you
now understand why we refuse the prefix "pseudo" based on the sole fact that computers are
deterministic machines.
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TEST RESULTS / AHS-Random

First-bit and the number of repetitions

Let's begin with the starting bit of AHS-Random sequences. As we have a 50/50 probability
for ones and zeros, the first bit has to be a zero in approximately half of the cases. But for the
next bit, the same rule applies. As a result we will have only 25 % of a single zero followed
by a one, and 25 % of a single zero followed by a zero. In those 25 % with the same bit on the
first two places, again one half will have a third identical bit while the other half will have a
different bit in third place. So the arithmetical series is: 25 % only a single identical bit, 12,5
% two, 6,25 % three, 3,125 % four etc. With the number of test-cases (i.e. different seedings)
the probability will increase to get a long string of identical bits in the beginning. If someone
tells you to discard a RNG because you found a sequence beginning with 35 zeros, don't trust
him, he has not yet realized the spirit of randomness. First do a check with a big number of
starts, and only if you find an obvious irregularity in the result you have to follow his
recommendation. We have done 5 series with different 64 KB BFTs and always 200 billion
seedings with seeds from 0 to 199'999'999'999. In appendix B you find the results of these
1000 billions cases.

Three long sequences of 100 Terabit each

We have generated three different 100'000 billion bit long sequences with BFTs of 8 KB, 16
KB and 64 KB, the whole sequence with one seeding. We counted the "1" bits per 1000 bits,
per 1 million and per 1 billion. The results given are each time for 8 KB BFT / 16 KB / 64
KB.

The total "1"s for the whole sequences are 50'000'000'516'497 / 50'000'003'288'661 /
49'999'999'516'586. This seems ok as the standard deviation for this case is 5'000'000. With
only three results we may not yet decide that the randomness is too low.

The ratio for the "fair" coin flipping is : surplus of one "1" per 193'611'966 bits / surplus of
one "1" per 30'407'512 bits / one missing "1" per 206'862'027 bits.

The counting of "1"s per 1000 bits, three times 100 billion results, was the following:

Ratio between < 500 / > 500 (exactly 500 discarded) 1.00000184 / 0.99999355 / 1.00000233
Std.dev. total: 15.811375 / 15.811425 / 15.811367  (probability : 15.811388)

only left : 15.811342 / 15.811421 / 15.811373 "

only right: 15.811408 / 15.811429 / 15.811360 "

As the number of available results is very high, we checked, in addition to the standard
deviation, the exact probability for every possible number of "1"s. The total of the surpluses
resp. the missing ones, compared to the theoretical binomial distribution, was:

1'083'041 / 1'170'815 / 1'065'474  per 100'000'000'000
resulting in a percentage of 0.001083 % / 0.001171 % / 0.001065 %

The lowest encountered number of "1"s : 393 / 396 / 396
The highest encountered number of "1"s: 607 / 608 / 609
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The counting of "1"s per million bits, three times 100 million results, was the following:
Ratio between < 500'000 / > 500'000 (exactly 500'000 discarded ) :
1.00000536 / 0.99973038 / 0.99982747
Std.dev. total:  499.988568 / 500.011027 / 500.028362 ( probability: 500 )
only left: 499.975055 / 500.042811 / 500.096373 "
only right: 500.002080 / 499.979250 / 499.960354 "

The lowest encountered number of "1"s : 497280 / 497177 / 496935
The highest encountered number of "1"s : 502830 / 503060 / 502830

More than 99.99 % of the cases are in the range from:
498056 up to 501942 / 498052 up to 501943 / 498055 up to 501946

From the counting of "1"s per billion bits we got three times 100'000 values. If we claim
infinite randomness, the variance, and so the standard deviation, has to follow the general law
even at this sample-size. The results are the following :

Std.dev. total: ~ 15820.177 / 15820.831 / 15863.822 ( probability: 15811.388)

only left: 15788.772 / 15779.193 / 15861.905 !

only right: 15852.047 / 15862.733 / 15865.907 !

The maximum of the difference is 1/3 percent. It would be very interesting to have results
from identical test-sequences from physical "true-random" generators.

Below 500'000'000 : 50041 / 50030 / 50126 samples
Above 500'000'000 : 49956 / 49968 / 49873 samples

Ten series with 240 Gigabyte AHS-Random 64 KB BFT compared to the MT19937

We generated ten times a sequence of 240 Gigabyte, 1920 Gigabits with the AHS-Random
generator (different BFTs from 64 KB) and ten times 240 GB with the MT19937 with
different seeds. In the results you find left side AHS / right side MT19937.

The results indicated concern the total of the 10 x 240 GB, so 2.4 Terabytes or 19.2 Terabits.

The total "1"s for the whole sequences are: 9'599'999'162'167 / 9'600'001'173'627

This seems ok as the standard deviation for this case is 2'190'890.23.

The ratio for the "fair" coin flipping is : one missing "1" per 22'916261 bits / surplus of one
"1" per 16'359'541 bits.

The counting of "1"s per 1000 bits, two times 19.2 billion results, was the following:
Ratio between < 500 / >500 (exactly 500 discarded) 1.00000958 / 0.99999277
Std.dev. total: 15.811473 / 15.811306  (probability : 15.811388)

Only left : 15.811459 / 15.811282 "

only right: 15.811486 / 15.811330 "

As the number of results available is very high, we checked, in addition to the standard
deviation, the exact probability for every possible number of "1"s.

The total of the surpluses resp. the missing ones, compared to the theoretical binomial
distribution was:

501'654 / 481'026 per 19200'000'000
resulting in a percentage of 0.002613 % / 0.002505 %
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The counting of "1"s per million bits, two times 19.2 million results, was the following:

Ratio between < 500'000 / > 500'000 (exactly 500'000 discarded ) :
1.00022457 / 1.00037307

Std.dev. total:  500.109484 / 500.160676  ( probability: 500 )
only left: 500.153327 / 499.993487 "
only right: 500.065627 / 500.327871 "

The lowest encountered number of "1"s : 497307 / 497208
The highest encountered number of "1"s : 502754 / 502749

More than 99.99 % of the cases are in the range from:
498056 up to 501946 / 498054 up to 501952

From the counting of "1"s per billion bits we got two times 19200 values. If we claim infinite
randomness, the variance, and so the standard deviation, has to follow the general law even at
this sample-size. The results are the following :

Std.dev. total:  15805.438 / 15890.881  ( probability: 15811.388)

only left: 15780.538 / 15834.707 !

only right: 15831.251 / 15947.123 !

Below 500'000'000 : 9624 / 9552  samples
Above 500'000'000 : 9575 / 9647  samples

In this test we counted the distribution per byte-value (8 bit unsigned integer).
The average value par byte: 127.50001600 / 127.50007013 (Theor. 127.50)
The standard deviation on the numbers per value:

97'361.260 / 92'790.131 (Theor. 96'635.288)

We counted also the number of strings of identical bits per length.
The longest string for the AHS was 44 x "1" (probability 0.272)
and was 47 x "0" for the MT19937 (probability 0.034).

The difference theoretical / counted for all cases was the following:
"0" abs. 4889103 / 3545984  inpercent 0.00010186 % / 0.00007387 %
"1" abs. 2021919 / 2763252  inpercent 0.00004212 % / 0.00005757 %

As the number of changes from "0" to "1" and from "1" to "0" is linked arithmetically to the
previous values, it may not surprise that they are very close to the theoretical value of 50 %.
In absolute figures: 9'600'001'606'248 / 9'600'000'517'286

The standard deviation is again 2'190'890.23, as the probability for a change is the same as
the probability for a "1" or "0".

The diversity of the first 256 bits

In order to check if the first 256 bits produced are really random if using the same BFT
continuously seeded (new seed = old seed + 1), and for different BFTs seeded with always the
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same seed, we have done the following two tests:
5'000'000 keys of 256 bit, same BFT. seeds from 0 to 4999999

The test consist of a systematic check of every key of 256 bit against all the others, and to
find out the number of diverging bits. Once we have tested A against B, there's no need to
also check B against A, as the differences are the same. So we got a total of
12'499'997'500'000 tested pairs. The results from this test:

For random keys the average result should be 128. Counted: 127.999999974

Ratio between less than 128 bit difference and more than 128 bit difference : 1.000000148
Total std. dev. (Theoretical 8 ) : 8.00000103

Only left side: 8.00000044

Only right side: 8.00000161

Lowest number of different bits : 69 Highest : 186

More than 99.9999 percent of the cases are in the range from 89 up to 167.

5'000'000 keys of 256 bits, different BETs, seed always 0

The test consists of a systematic check of every key of 256 bit against all the others, and to
find out the number of diverging bits. Once we have tested A against B, there's no need to
also check B against A, as the differences are the same. So we got a total of
12'499'997'500'000 tested pairs. The results from this test:

For random keys the average result should be 128. Counted: 128.000000955

Ratio between less than 128 bit difference and more than 128 bit difference : 0.999999928
Total std. dev. (Theoretical 8 ) : 8.00000217

Only left side: 8.00000147

Only right side: 8.00000288

Lowest number of different bits : 71 Highest : 187

More than 99.9999 percent of the cases are in the range from 89 up to 167.

Sorting ten samples of 30 billion 8-Byte strings (64 bits)

The previous test was designed to check if the number of different bits follows the theoretic
probability. The number of test-pairs, in the region of 10exp13, and the length of the tested
keys was nearly excluding an identical pair. Based on the binomial law we are able to
calculate e.g. the probable number of identical values in a big set of small random bit-strings.
In 30 billion 64-bit random samples the theoretical probability is 24.39454884. But
comparing a set of 30 billion strings each one against all the others is definitely an impossible
task if you don't have a grid of one million computers at your disposal. The number of pairs
to check is 4.5 * 10exp20.

We can solve this problem by first sorting the 30 billion strings and then checking how many
identical strings we find, as same strings will show up as neighbors in the sorted set.

During the sort-process we are also able to determine the number of strings identical on the
last 16 bits, the last 20, 24, ... up to the whole string of 64 bits.

An infinitely distributed random sample will follow very closely the theoretic probability.

In appendix C you find the sum of the values for the ten tests with 30 billion strings, up from
the last 32 bit to 64 bit (the tables from 16 bit to 28 bit are too long!).

It is very interesting how close the number of identical 64 bit strings is, compared to the
theoretic value. We think that this is only by pure coincidence, as the details for the different
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tests are: 17, 35, 33, 24, 19, 22, 28, 28, 21, 17.

The theoretic expectation being 24.39454884, we may compare the resulting theoretic

standard deviation of 4.939083 with the one calculated from the 10 test-cases, which is
6.069599. Theses values convince us that the same result for the sum and the theoretic
probability is not due to a what-so-ever regular pattern in the randomness.

Simulating ten times 3.6 Billion ''birthday-paradox'' / 23 persons

The only simulation test we have done is the simulation of having 23 persons in the same
room and to calculate how many times at least two persons share the same birthday. By
random numbers we attributed a given birthday to each person, under the presumption of 365
days per year and an equal probability for every day.

As you can recognize from the test-result in appendix E, if you want to do this well-known
bet some day, don't forget to insist on the term "at least", as otherwise you risk to lose your
bet if your partner insists on excluding the cases with three or more identical birthdays!

Seeing the big number of possibilities for having "at least" two identical birthdays, one might
easily understand that the trick to calculate the probability is to only calculate the probability
q for not having two identical birthdays, and to calculate p = 1 - q. Not having two identical
birthdays is only the line of "cases with 23 unique birthdays".

We must apologize for not yet having calculated the probability of the different variants, as
these probability values would increase the usefulness of this test. Did we hear someone say
he will take over this challenge ??

The test consists of filling 3.6 billion times a room with 23 persons, to attribute a random
birthday to every person, and to first calculate the number of times having at least two
persons sharing identical birthdays. On the subtotals per 30 million cycles, we did some
calculations on the randomness.

Using the binomial distribution, it is possible to calculate the probability to have unique
birthdays, 2 identical and so on. So we calculated these values for the whole test-sample as
well. As last analysis we sorted the different positive cases by the encountered variations of
identical cases.

We ran this complete test forty times: ten times with AHS-Random taking the last 9 bits from
16 bit integers / ten times with MT19937 taking the last 9 bits from 32 bit integers / ten times
with the Irand48 from the SVID, giving an 31 bit unsigned integer from which we took the
last 9 bits / ten times a 64 bit LCG running with the same parameters as we use in the AHS,
from which we used the bits 33 to 39.

Here are the results (counted cases minus theoretically probable cases) of every test for the
four generators:

test-number AHS MT19937 lrand48 LCG 64
1 8178 44989 -1546513 -38315
2 -4740 78179 -1546111 -23011
3 3004 -5435 -1547643 12066
4 52061 13665 -1546088 37922
5 3027 -8233 -1546184 23499
6 3873 -35661 -1545867 21777
7 54684 13462 -1545978 5507
8 -30046 -1059 -1545604 20416
9 7284 79064 -1546583 27019
10 -6741 -2669 -1544686 -2669
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Average 9058.4 17630.2 -1546125.7 8421.1

As indicated before, we may calculate the expected number of cases with unique birthdays, 2
identical etc. For the AHS and the MT19937 the differences theoretical-counted are as
follows (total of 23 x 36'000'000'000 = 828'000'000'000 persons) :

Category Expected cases Diff. AHS Diff. MT19937
unique 779'502'942'681.12 -257'429.12 -188'675.12
2 ident. 23'556'407'608.49 116'038.51 168'181.51
3 ident. 453'007'838.62 6'417.38 -47'222.62
4 ident. 6'222'635.14 1'353.86 -1'257.14
5 ident. 64'961.57 127.43 -164.57
6 ident. 535.39 8.61 -27.39
7 ident. 3.57 -0.57 -0.57

Conclusion of the tests

By presenting these "first-light" results from a completely new type of random number
generators, the first software "flipping a coin" and built on the principle of "give chance a
chance", we hope to have convinced you that this method is worth a serious consideration.
Concerning the potential use in cryptography it seems that the usefulness for different
applications is indisputable. In the field of scientific simulations the tests have shown that it
may enter the racecourse without wrong modesty; not in order to become the most powerful
horse, but maybe to become the best horse for replacing by software the physical random
generators in simulations.
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RPP - OTP

Randomly Permuted Positions - One-Time Pad

Introduction

The invention of the one-time pad is considered a combined work of Gilbert Vernam of
AT&T and Captain Joseph Mauborgne. To summarize we may retain as characteristic
principle that the one-time pad is the method to add to a given plaintext a string of randomly
chosen characters of the same length as the original plaintext. The resulting ciphertext is
considered to be cryptographically secure (proved mathematically by Claude Shanon). This is
only true if we use a different string of random characters for every new encryption, in order
to avoid possible attacks based on statistics comparing collected ciphertexts. Thus the name
"one-time".

There exist some objections against the use of the OTP in modern cryptography. The first
ones concern the difficulties for safely distributing the enormous volumes of random data
needed and the secure storing of this random data, while the second group of objections
concerns the possibility of altering the message during the transmission over unsecured
transmission channels (e.g. the public Internet).

The first objections may be considered as solved with the presentation of the AHS-random
number generator, which allows to store virtually on a smartcard or a USB-Stick 2exp64
different secret random strings of a length of 2exp64 bits each, in a secured (password
protected) and user-friendly way. To solve the second problem, the use of one of the modern
message-authentication algorithms seems to be the logical solution. Although this
combination alone guarantees unbreakable security, the method presented here as RPP-OTP
will increase the protection and the number of possible fields of application.

The Randomly Permuted Positions - One-Time Pad

In order to allow not only the secure transmission of files, but also to serve in a full-duplex
live communication like e-banking, the RPP-OTP method breaks the messages into 1000
bytes blocks. Every block is then transformed in a 1024 bytes long cipher-text block. This
block contains information about the block-number (of the file or the session), the length of
the text stored in the datagram and a message-authentication information. In our test-
implementation we use a derived work from the MD 5 algorithm.

The term "randomly permuted positions" indicates that during the encryption every byte of
the original text has changed its position in the ciphertext in a random ways, i.e. the byte 5
may be in the first block on position 844, in block two on the position 45, and so on. The
motivation to do the encryption this way is based on the fact that a lot of communication
messages (like e-banking) very often use the same standard and known small text pieces in all
messages. The resulting cipher-text in which every byte has randomly changed its position
and every bit has twice been XOR-ed with different random bits, leaves any possible attacker
with a bitstring of 8192 perfect random bits.

Even the positions of the message-authentication code (16 byte = 128 bit) are unknown, so no
attack on this information is possible.
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The encryption goes as follow:

a) we produce 8192 random bits, the base, in a memory area organized in bytes

b) we prepare an empty list of 1024 flags and a memory space of 1024 bytes to store the
cypher-text

¢) we store on 64 bits (8 bytes) the block-number (54 bits) and the length of the datagram (10
bits)

d) we store these 8 bytes to a 1024 byte block, followed with up to 1000 bytes plain-text and
16 zero bytes (if the plain-text is smaller than 1000, the remaining bytes are zero)

e) we calculate the message digest as authentication and store the resulting 16 bytes to the
last 16 zero bytes, so that we now have the 1024 bytes original text to encrypt

f) we store zero to the cipher-position-counter and the original-text-counter

g) we add, from the base, the lowest 5 bits (0 to 31) from the byte indicated by the position
counter to the position counter, taking care that all additions to this counter have to be
followed by a subtraction of 1024 if the result is 1024 or above

h) we check if the flag corresponding to the position counter is empty, and if not we increase
the position counter by one until we find an empty position

1) we store the result of the byte from the original text referenced by the original-text-counter
XOR-ed with the byte of the base referenced by the cipher-position-counter to the same
byte-position in the cipher-block

j) we flag the same position in the flag-list as occupied

k) we increase by one the original-text-counter and the position counter

1) we repeat 1023 times the steps g) - k)

m)we produce the next 8192 random bits

n) we XOR the cipher-block with this 8192 bit-string, giving us the cipher-text to send

The decryption on the receiver side is done in the opposite direction:

a) we XOR the cipher-text with the second block of random bits

b) we use the first block, the base, of 8192 random bits to find back the positions of the
original text, and we XOR the cipher with the corresponding byte from the base to give us
the original text

c) after completing the 1024 bytes of the original text, we check the block-number and the
length of the datagram, and are able to detect an error

d) we save the last 16 bytes, the message authentication and replace these bytes with zeros

e) we recalculate the message-digest and compare the result with the saved 16 bytes,
allowing us to detect any alteration by any means, e.g. by transmission error or by an
attacker

If you feel that this method seems to be a lengthy process, don't forget that computers are in
charge to encrypt and decrypt the messages. A Pentium IV with EM64T running at 3 Ghz is
able to process around 6000 blocks/sec, generation of the AHS-random numbers included,
giving a throughput of 6 Megabytes/sec.

Of course this method is not the solution for 10 Gigabit/sec links, but the combination of a
symmetric encryption like AES combined with RPP-OTP for the key-exchange will
guarantee the same high-security as the use of the so-called quantum cryptography, and offer
as benefits the low costs and the possibility to easily link long distances, like Europe with
Australia.

The small physical supports containing the MPU with protected memory may be programmed
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in pairs with a secret BFT of the AHS-random. Copying during the physical transportation to
the distant partner is impossible, thus avoiding a possible source of information leak in case
that the random numbers for a one-time pad would have to be exchanged using a CD or tape.
If we use the AHS-random number generator in the MPU, the generation of new keys may be
executed as well.

The security of the RPP-OTP method becomes more evident if we think of small messages
for authentication and login for example. As they are now always hidden in 8192 random bits
it becomes impossible for an attacker to cryptanalyse the messages transmitted.

If we use the AHS-Random generator, it is also very practical that we may openly indicate (in
the subject of an e-mail or in the synchronization of a full-duplex channel) the seed to use for
decrypting. In full duplex the responder may use the first seed plus one in order to avoid the
usage of the same random numbers twice.

To extend the usage over point-to-point communications, there exist two possibilities. Where
appropriate we may create a trusted and secured post-office which shares a different BFT
with every participant. Now every member of the group has the possibility to send and
receive secret messages from any other member, as the post-office internally decrypts the
received message (with authentication), and sends it, after a new encryption with the
appropriate BFT, to the addressee. This seems to be the best solution for local authorities,
bigger corporations and so on.

A different solution exists for smaller closed groups to share a common BFT. Every
encryption unit has the authorization to only use a restricted number-space of the 2exp64
possible seeds. The first encrypted RPP-OTP block includes the one or more addressees to
whom one wants to send the message. The decryption program of the units of other members
will then refuse to decrypt the message if its own member-number is not included in the
addressee-list of the first block.

Other applications may concern the distribution of secret papers inside an organization, by
including a decrypting unit between the computer and the printer. The addressee, by using his
own smartcard with password-protection, is able to print out the document. The plaintext
never shows up inside the company's IT-network.

In the same way one may organize a trusted company-wide computer-network where all
sensitive computers are shielded by an RPP-OTP system, nevertheless allowing all internal
communication over the Internet. This may apply to lawyer offices, patent attorneys, bankers
etc.

21



AHS-RANDOM & RPP-OTP / version 1.0 April 2006

Test results / RPP - OTP

We checked the encryption with the RPP-OTP method in combination with the AHS-RNG.
For the first test we encrypted the same text, with a length of almost 1000 bytes, one million
times using the same BFT of 64 KB and seeds from 0 to 999'999.

For the second test we encrypted the same text using one million different BFTs from 64 KB,
but always with the same seed of 0.

Test type: 1'000'000 RPP-OTP encrypted blocks with the same original
text are tested (bit-difference-count), each against all
the others.

Tested block size: 8192 bits = 1 RPP-0OTP block
Theoretical values in brackets

First test

Total tested pairs: 499'999'500'000

Total bits different: 2'047'997'927'056'690
Average bits per pair: 4095.999950113330 (4096)

Total pairs with less than 4096 bits: 247796100936
Total pairs with more than 4096 bits: 247795914900
Ratio between 'less' and 'more': 1.000000750762 (1)

Total std.dev.: 45.254863069189 (45.254833995939)
Std.dev. left : 45.254930841773 (45.254833995939)
Std.dev. right: 45.254795296453 (45.254833995939)

Lowest value in the test: 3784 46.191 % of 8192
Highest value in the test: 4416 53.906 % of 8192
99.9999 percent of the pairs are in the range from 3875 up to 4317

Second test

Total tested pairs: 499.999.500.000

Total bits different : 2.047.997.888.606.412
Average bits per pair: 4095.999873212697 (4096)

Total pairs with less than 4096 bits: 247796661872
Total pairs with more than 4096 bits: 247795300887
Ratio between 'less' and 'more': 1.000005492376 (1)

Total std.dev.: 45.,254797068507 (45.254833995939)
Std.dev. left : 45.254817823404 (45.254833995939)
Std.dev. right: 45.254776313488 (45.254833995939)
Lowest value in the test: 3776 = 46.093 % of 8192
Highest value in the test: 4405 = 53.771 % of 8192

99.9999 percent of the pairs are in the range from 3875 up to 4317
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Glossary of terms used in AHS-Random

BFT Bit-Fishing-Table

One-dimensional bit-table filled randomly with an equal number of “0” and “1” bits. The dimension
(total of the random bits) has to be an exponent of two. Depending on the type of application the
exponent may vary from 16 to a technical limit of 32.

The technical limit refers to a 32-bit processor architecture. Thus the number of bits may be 65'536
bits (8 KB), 131'072 bits (16 KB), 262'144 bits (32 KB), 524288 bits (64 KB), and so on.

The random bits in the BFT form the basis for the “endless” variations and the unpredictability of the
produced random number output of AHS-RNG.

For crypto applications the 8KB, 16KB, 32KB and 64KB versions are of special interest, as they
easily fit into the secured memories of smartcards or USB sticks.

Considering that the BFT, and not the seed, is the only element to be held secret in crypto
applications, one might wonder how a “secret” of only 8KB may be sufficient for top secured
applications.

From the 2.003529 * 10exp19'728 possible tables of 8KB (2exp65'536), there are

6.244451 * 10exp19'725 different tables with 32'768 zero-bits and 32768 one-bits.

If we have a given BFT of 8 Kbyte, we would need to produce approximately 10exp141 tables before
we would find one with 55 % or more identical bits compared to the original. To find one with 60 %
or more identical bits, we need to produce approximately 10exp572 tables, and to come up to 70 %
identical bits, we need to produce 10exp2'341 tables, and so on. If we suppose that the population on
earth will reach 100 billion people, and that everybody will need one table per second, the odds are
very, very strong that in 1'000 years, we will not see two tables having 55% or more identical bit-
positions. Indeed, as the probability is 1 to 10exp141 to get a table with 55% or more bit-positions
identical to a given table, we need more than 10exp70 tables to find two tables with more than 55%
identical bits, by applying the so-called “birthday-paradox” (which, by the way, is not a paradox, but
a fact that can easily be explained by means of the principles of the theory of probability).
Considering that the total number of produced tables in 1'000 years would sum up to 3.153 * 10exp21,
we have to admit that the odds are very, very strong.

The new invented method in AHS-Random efficiently transforms this enormous potential of a simple
8 KByte secret table into billions of billions of unpredictable and well distributed random numbers.
Every time we double the size of the BFT, the exponents indicated in the example doubles as well.
To find a 64 Kbyte (524'288 bits) BFT-table with 55% or more identical bits compared to a given
table, we need to produce approximately 10exp1'128 BFT-tables.

BM Basic Modifier

A table of 32-bit unsigned integers with a recommended dimension of 16 elements.

During the seeding process the values of these integers are calculated and they are not modified until
the next seeding.

The recommended method for the calculation of these values is to alternately fill blocks of two
values, one block with the LCG 64-bit random number XORed with randomly fished bits of the BFT
to guarantee the best secrecy of these values, and the next block with unmodified LCG random
numbers to guarantee the uniqueness for any given seed out of the 2exp64 possible ones.

These values interfere cyclically in the production of the FBMs. Every time the requested random
number of 8, 16, 24 or 32 bits is terminated, the FBM3 is transferred to the FBM4, the FBM?2 to the
FBM3, and a new FBM is created by XORing the next BM with the last 32 bits generated. After
using the BM16, the next cycle begins again with the BM1.
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FBM FeedBack Modifier

A table of four 32-bit values (FBM1 to FBM4) used for the creation of the BRVs. The creation of the
FBMs is described in the last paragraph of BM. The feedback of the last 32 bits produced influences
the value of the generated FBM, but does not determine the value itself. Nevertheless we use the
expression “feedback” to indicate that the last bits generated influence the calculation of these values.
In appendix D you find an illustration of the effect of this feedback.

BRV Basic Randomness Value

A table of four 32-bit values (BRV1 to BRV4).

After the production of one bit, a new LCG 64-bit random number is generated, and one of the BRV,
in a cyclic way, is newly calculated, by XORing the upper 32 bits of the LCG random number with
one of the FBMs. The number of the FBM to be used is also determined in a cyclic way. The role of
the BRVs is to deliver during 4 cycles every time one fourth of the bits needed to assemble the
address of the bit to be “fished” from the BFT. It is very important to use every BRV-bit only once,
in order to guarantee a well distributed random number production.

FAAP Final Address Assembling Parameter

16 special values (4 groups of 4) used to assemble the final BFT-address for "fishing" the next bit.
To easily understand the specialty of these values, we may imagine every bitposition of the BFT-
address as a separate mini-chessboard of 4 x 4 squares. The columns are numbered A, B, C, D, the
rows 1, 2, 3, 4.

We now have to put four queens on this miniboard in such a way that one queen will be in every row
and in every line. One possibility is to put them in the squares Al, B2, C3 and D4.

As we may now permute the rows or the columns, we will find that there exist 24 (4!) possibilities
to arrange the 4 queens. Every square will have a total of 6 queens on all the 24 different miniboards.
Let us suppose that we need a 19-bit address-space for a 64 Kbyte BFT. In a first step we randomly
discard 4 miniboards having together one queen on every square. There exist 24 possibilities to
define the subgroup to discard. From the remaining 20 boards we randomly decide the order to take
19 boards to calculate the FAAPs. Each FAAP value corresponds to a given square on the
chessboard. From the first board selected we write a zero bit to the first bitposition of every FAAP
value if in the corresponding square there is no queen, and a one bit if there is a queen. After we have
processed board 19, the FAAP values are calculated. In every column and in every row we will have
3 values with 5 bits and one with 4 bits.

Don’t be afraid, in practice we do not have to play with 24 mini-chessboards, because on a 3 Ghz
Intel Pentium IV we are able to calculate randomly about 100’000 different FAAP tables per second.
The total number of different tables we can find this way is 58°389°648°196°239°360°000 for a 19-
bit BFT-table (64 Kbyte).

To assemble the FA (final address) in order to determine the next bit to be extracted from the BFT,
we use the four parameters from one line (A1, A2, A3, A4, the next cycle from the B line, then C
and D). The correctly calculated FAAP guarantees that every bit of the address is assembled

properly.

As we have seen in the description of the BRV, every BRV will participate in the address-assembling
with different bits during 4 cycles. It is very important that we never use the same bit twice,
otherwise the good distribution of the random numbers produced will be in danger.

Having one bit per position in the 4 parameters per row fulfills this requirement.
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We may arbitrarily choose a given table (that looks “very random”) and include it in the program
instructions, or we may randomly generate tables in case we want to use a random FAAP table as
secret session key in crypto applications .

As illustration of the described method, please find in appendix A two examples of randomly
generated tables for a 19 bit BFT (64 Kbyte).

FA Final Address

The address (number) of the bit to be extracted from the BFT in order to form a bit position in the
random number to be produced

The final address is an assembling of different bit positions from the four BRVs. In order to get well
distributed random numbers, the FAs produced also have to be randomly distributed over the whole
address space of the BFT.

Tests of the number of accesses per bit in the BFT have confirmed that the invented AHS-Random
method to determine the FA is extremely close to the theoretical value, if we calculate the variance
and the standard deviation for the number of accesses to the different bits.

Run-time randomness

The invented method of the AHS-RNG allows a unique way to increase the randomness during the
production of the random numbers. As explained, you have the choice to ask the function to produce
8, 16, 24 or 32 bits per function call. The function updates the FBMs before returning the bits
produced. This property allows the user to influence the production of the next whole string by
asking two times 16 bits instead of one time 32 bits. The application-program may use a simple
source of some randomness, like the clock() variable, to decide between these two possibilities. A
few lines to illustrate the explication:

At program-start

clock t x;
x = clock()%997;

For producing the 32 bits

if (x '=0) {
r32 = ahsrnd(4);
X--;
}
else {
rléhbits ahsrnd(2);

riélbits = ahsrnd(2);
x = clock()%997;
}

By doing so the produced random string will be unique and unreproducible after a few thousand
function calls, but nevertheless well distributed and statistically correct.

This method is completely different to a possible random re-seeding of a LCG, as that would not
produce new random numbers, but only random numbers from a different part of the periodic cycle.
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APPENDIX A

Per Column

90118
3096
33601
397472

524287

263744
36899
147596
76048

524287

4497
458820
11298
49672

524287
165928
25472
331792
1095

524287

az2.
b2.
c2.
d2.

a3.
b3.
c3.
d3.

a4.

c4.
d4.

0010110000000000110
1000000011001000000
0000001000110010001
0101000100000101000

1111111111111111111

0000000110000011000
0001001000000100011
1110000000001000100
0000110001110000000

1111111111111111111

0001000001101000001
0100100000010001100
0000010110000100010
1010001000000010000

1111111111111111111
1100001000010100000
0010010100100010000
0001100001000001000
0000000010001000111

1111111111111111111

90118
263744
4497
165928

524287

3096
36899
458820
25472

524287

33601
147596
11298
331792

524287
397472
76048
49672
1095

524287

al. 0010110000000000110
az2. 0000000110000011000
a3. 0001000001101000001
a4. 1100001000010100000
total: 1111111111111111111
bl. 1000000011001000000
b2. 0001001000000100011
b3. 0100100000010001100
b4. 0010010100100010000
total: 1111111111111111111
cl. 0000001000110010001
c2. 1110000000001000100
c3. 0000010110000100010
c4. 0001100001000001000
total: 1111111111111111111
dl. 0101000100000101000
d2. 0000110001110000000
d3. 1010001000000010000
d4. 0000000010001000111
total: 1111111111111111111
al. 0010000001000101000
az2. 0000011000010000101
a3. 0100100010101000000
a4. 1001000100000010010
total: 1111111111111111111
bl. 0001100000010010100
b2. 0110000100001100000
b3. 1000010001000000011
b4. 0000001010100001000
total: 1111111111111111111
cl. 1000000100101000001
c2. 0000100010000010010
c3. 0001001000000101100
c4. 0110010001010000000
total: 1111111111111111111
dl. 0100011010000000010
dz2. 1001000001100001000
d3. 0010000100010010000
d4. 0000100000001100101
total: 1111111111111111111

66088
12421
148800
296978

524287

49300
198752
270851

5384

524287

264513
17426
36908

205440

524287
144386
295688
67728
16485

524287

ad.
b4.
c4.
d4.

0010000001000101000
0001100000010010100
1000000100101000001
0100011010000000010

1111111111111111111

0000011000010000101
0110000100001100000
0000100010000010010
1001000001100001000

1111111111111111111

0100100010101000000
1000010001000000011
0001001000000101100
0010000100010010000

1111111111111111111
1001000100000010010
0000001010100001000
0110010001010000000
0000100000001100101

1111111111111111111

66088
49300
264513
144386

524287

12421
198752
17426
295688

524287
148800
270851
36908
67728
524287
296978
5384
205440
16485

524287

26



AHS-RANDOM & RPP-OTP / version 1.0 April 2006

APPENDIX B

First-bit counting from 1000 Billions seedings

Bits
ident.

OCooNOULTA,WNRE

EXPECTED

250000000000,
125000000000.
62500000000,
31250000000,
15625000000.
7812500000,
3906250000.
1953125000.
976562500.
488281250.
244140625.
122070312.
61035156.
30517578.
15258789.
7629394.
3814697.
1907348.
953674.
476837.
238418.
119209.
59604.

29802.

14901.

7450.

3725.

1862.

931.

465.

232.

116.

58.

29.

.55
7.
3.
1.

14

00
00
00
00
00

00
00
00
00
00

25
13
06
53

63
32
16
58
29
64
32
16
58
29
65
32
66
83
42
21
10

28
64
82

ZEROS

250005340837
125003907692
62501990060
31250972089
15625670577
7812827960
3906222126
1953192065
976619544
488310505
244130974
122073726
61058159
30519528
15259016
7629631
3816690
1903552
953198
477444
238924
118687
59475

29651

15124

7510

3658

1817

908

459

208

116

47

34

11

7

3

3

500013352015

ONES

249993933978
124996597854
62498320818
31248918322
15624468360
7812235392
3906060268
1953067529
976507281
488249523
244151810
122072053
61028351
30510457
15264620
7628766
3817860
1906014
953784
476184
238854
120261
59866

29854

14921

7438

3850

1785

962

459

259

125

75

31

14

1

3

3

499986647985
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APPENDIX C

10 sorts of 30 billion
64 bit strings

Missing pattern at 32 bit:

Counted 39772588
Expected 39760143.96

32 bit

36

40

44

48

52

56

60

64

bit

bit

bit

bit

bit

bit

bit

bit

IDENT.

Ok, WN

WN = P WN R

wN -

N =

COUNTED

277734693
969903481
2258306894
3943590374
5509001250
6413306296
6399535311
5587482335
4336383172
3028945745
1923379493
1119626869
601569978
300112963
139757103
61027067
25081813
9726682
3575488
1250002
415151
131821
40278
11776

3214

809

232

66

15

0

1

193876938039
42319275732
6158345881
672102539
58689936
4270988
266433
14444

677

37

4

291925126067
3982613535
36217211
247079

1378

4

299488801420
255380589
145738

47

299968031219
15983549
561

299997999372
1000311
2

299999875468
62266

299999992250
3875

299999999512
244

EXPECTED

277721397.
969930775.
2258296068
3943503954.
5509011384.
6413333333.
6399516548.
5587513339.
4336481090.
3028997050.
1923390907.
1119560857.
601541711.
300122879.
139755606.
61011352.
25068198.
9727741.
3576183.
1248967.
415425.
131896.
40055.
11657.
3257.

875.

226.

56.

13.

3.

0.

193877209474.
42319270753.
6158264405.
672109061.
58682844.
4269738.
266283.
14531.

704.

30.

1.

291925208330.
3982566454.
36221230.
247072.
1348.

6

299488845190.
255359548.
145155.

61.

299968027280.
15985507.
567.

299998001605.
999194.
2.

299999875099.
62450.

299999992193.
3903.

299999999512.
243.
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APPENDIX D
The influence of the FBM (Feedback modifier)

We produced 2 different bit-strings with the same seed.
Both times we used the same BFT of 64 KB, except that we exchanged
2 bits in the BFT on an arbitrarily selected position ( "01" to "10").

From the two bit-strings we produced a new one by XOR-ing the bits
from the two strings to get a string with a "1" on the bit-positions
differing, and a "0" if both bits are identical.

As long as we have not yet "fished" one of the modified bits, the output
must be identical. But when we encounter one of the two bits, two
different reactions are possible, depending on the position of this

bit in the register "last 32 bits produced" when we end the production-
cycle of 8, 16, 24 or 32 bits.

The following dump illustrates the two possibilities:

alain@linux:/ux> od -tx1 arbS4aalmore

0000000 00 00 OO GO 00 00 OO GO 00 00 OO OO 00 00 0O 00
*

0104300 00 00 PO GO 00 80 0O OO 0O 00 OO OO 00 00 0O 00
0104320 00 00 0O GO 00 00 OO GO OO0 00 OGO OO 00 00 0O 00
*

0204740 08 00 00 0O GO OO0 OO OO0 OO0 OO GO 0O OO 6O 00 OO

0204760 00 00 PO GO 00 0O OO OO 0O 0O OO OO 00 00 0O 00
*

0317500 00 01 00 00 GO 20 20 00 08 08 80 88 14 67 69 20
0317520 51 08 20 69 c9 dl1 49 49 db 54 c7 60 34 3b 20 8f
0317540 43 13 24 2b 74 6e 65 d6 fd 26 44 cd 1d 60 e8 80
0317560 9c 25 62 74 3f f7 34 Oa 80 42 5c d0 f8 6b b4 82
0317600 46 2c 03 58 eb 59 81 60 87 9e 24 ec 54 47 e5 48
0317620 6f ef db b0 b9 20 cd c5 69 4f db c3 64 c3 f9 bb
0317640 bl 7f 4c 9d 45 68 ec 4f 42 e8 1f 8d 19 d1 68 5f

One bit different in the first and second case:

The position in the file (x00800000, x08000000) in 32 bit

blocs indicate that the different bits are not in the range

of the relevant last 19 bits (for 64 KB BFT) for XOR-ing the FBM

for the calculation of the next BRVs, so no influence in the next rounds.

One bit different in the third case:

The dynamic of the third case is very interesting. In the production

of the 32 bits, the difference occurred on the bit position 17,

producing an effect on the next cycle of 32 bits.

This cycle now shows a difference of 2 bits within the interval of 8 bits.
The next cycle produces a difference of 5 bits in the production of 32 bits,
then 12,9, 11, 15, 13, 11, 18, 17, 11, 14, 18 ....

and the separation in 2 different random bit-streams is accomplished!
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APPENDIX E

RESULTS FROM 3.6 BILLION TEST-CASES WITH 23 PERSONS / RNG: AHS-RNG 64 KB

Theoretical number of cases by probability calculation:
Total counted cases with at least two identical birthdays: 1826278222

Theoretic
Counted p

Difference between theoretical / counted:
Percentage of the difference :

al probability :

robability :

0.
0.

Difference theor./counted: +0.

507297234
507299506

000002272

18262

0.00044780 %

70044

0.507279 0.507382 0.507260 0.507335 0.507238 0.507176 0.507168 0.507446
0.507212 0.507215 0.507357 0.507471 0.507379 0.507377 0.507227 0.507335
0.507390 0.507461 0.507349 0.507321 0.507414 0.507267 0.507195 0.507342
0.507455 0.507368 0.507170 0.507333 0.507401 0.507211 0.507515 0.507246
0.507274 0.507374 0.507385 0.507284 0.507245 0.507301 0.507276 0.507282
0.507244 0.507332 0.507279 0.507292 0.507427 0.507288 0.507273  0.507246
0.507213 0.507328 0.507190 0.507183 0.507054 0.507414 0.507217 0.507320
0.507358 0.507376 0.507355 0.507178 0.507366 0.507306 0.507122 0.507240
0.507298 0.507182 0.507152 0.507407 0.507211 0.507128 0.507238 0.507285
0.507223 0.507398 0.507408 0.507439 0.507403 0.507465 0.507247 0.507464
0.507298 0.507217 0.507335 0.507215 0.507202 0.507420 0.507399 0.507304
0.507217 0.507370 0.507256 0.507421 0.507048 0.507344 0.507374 0.507224
0.507330 0.507272 0.507229 0.507156 0.507403 0.507394 0.507147 0.507321
0.507222 0.507324 0.507157 0.507360 0.507280 0.507341 0.507343 0.507317
0.507258 0.507224 0.507423 0.507363 0.507383 0.507216 0.507190 0.507375
aver. per 30 Mio.: theor. 15218917.030 / counted 15218985.183 / diff. +68.154
std.dev. of proba: theor. 2738.321 / counted 2816.567 / diff. +78.246
std.dev.real val.: theor. 2738.321 / counted 2815.742 / diff. +77.422
Number of sub-totals below theor. value : 58 / above theor. value : 62
RECAP OF THE NUMBER OF DIFFERENT OCCURENCES PER TEST-CASE
1 case with 6 unique birthdays
4 cases with 7 unique birthdays
24 cases with 8 unique birthdays
372 cases with 9 unique birthdays
964 cases with 10 unique birthdays
15421 cases with 11 wunique birthdays
24459 cases with 12 unique birthdays
403916 cases with 13 unique birthdays
374779 cases with 14 wunique birthdays
6572043 cases with 15 unique birthdays
3247479 cases with 16 unique birthdays
66304347 cases with 17 unique birthdays
14666963 cases with 18 wunique birthdays
399734188 cases with 19 unique birthdays
26622667 cases with 20 unique birthdays
1308310595 cases with 21 wunique birthdays
1773721778 cases with 23 wunique birthdays
binom.prob.: 77950294268.112 Counted: 77950220010.000 Diff: -74258.112
1323216633 cases with 1 time 2 ident. birthdays
402636576 cases with 2 times 2 ident. birthdays
66364064 cases with 3 times 2 ident. birthdays
6509441 cases with 4 +times 2 ident. birthdays
393399 cases with 5 times 2 ident. birthdays
14684 cases with 6 times 2 ident. birthdays
345 cases with 7 times 2 1ident. birthdays
3 cases with 8 +times 2 ident. birthdays
binom.prob.: 2355640760.849 Counted: 2355677279.000 Diff: 36518.151

4930558 cases with
185140 cases with

4

ident. birthdays
ident. birthdays
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333 cases with 3 times 3 ident. birthdays

621674 cases with 1 time 4 ident. birthdays
24 cases with 2 times 4 ident. birthdays

binom.prob.: 53.539 Counted: 63.000 Diff: 9.461

ANALYSIS OF THE VARIATIONS OF THE ENCOUNTERED 'AT LEAST 2 IDENTICAL'

16 times 1 x 6 ident. + 1 x 2 ident.
47 times 1 x 6 ident
2 times 1 x5 ident. + 1 x 3 ident. + 2 x 2 ident.
12 times 1 x5 ident. + 1 x 3 ident. + 1 x 2 ident.
29 times 1 x 5 ident. + 1 x 3 ident.
2 times 1 x 5 ident. + 4 x 2 ident.
25 times 1 x 5 ident. + 3 x 2 ident.
302 times 1 x 5 ident. + 2 x 2 ident.
1899 times 1 x 5 ident. + 1 x 2 ident.
4260 times 1 x 5 ident
2 times 2 x 4 ident. + 2 x 2 ident.
3 times 2 x 4 ident. + 1 x 2 ident.
19 times 2 x 4 ident
1 time 1 x 4 ident. + 2 x 3 ident. + 1 x 2 ident.
10 times 1 x 4 ident. + 2 x 3 ident.
3 times 1 x 4 ident. + 1 x 3 ident. + 4 x 2 ident.
12 times 1 x 4 ident. + 1 x 3 ident. + 3 x 2 ident.
137 times 1 x 4 ident. + 1 x 3 ident. + 2 x 2 ident.
1085 times 1 x 4 ident. + 1 x 3 ident. + 1 x 2 ident.
3116 times 1 x 4 ident. + 1 x 3 ident.
5 times 1 x 4 ident. + 5 x 2 ident.
197 times 1 x 4 ident. + 4 x 2 ident.
3760 times 1 x 4 ident. + 3 x 2 ident.
37294 times 1 x 4 ident. + 2 x 2 ident.
190553 times 1 x 4 ident. + 1 x 2 ident.
385501 times 1 x 4 ident
4 times 3 x 3 ident. + 2 x 2 ident.
76 times 3 x 3 ident. + 1 x 2 ident.
253 times 3 x 3 ident
1 time 2 x 3 ident. + 5 x 2 ident.
23 times 2 x 3 ident. + 4 x 2 ident.
556 times 2 x 3 ident. + 3 x 2 ident.
7684 times 2 x 3 ident. + 2 x 2 ident.
49690 times 2 x 3 ident. + 1 x 2 ident.
127175 times 2 x 3 ident
1 time 1 x 3 ident. + 7 x 2 ident.
21 times 1 x 3 ident. + 6 x 2 ident.
946 times 1 x 3 ident. + 5 x 2 ident.
24221 times 1 x 3 ident. + 4 x 2 ident.
373139 times 1 x 3 ident. + 3 x 2 ident.
3242464 times 1 x 3 ident. + 2 x 2 ident.
14662703 times 1 x 3 ident. + 1 x 2 ident.
26622667 times 1 x 3 ident
3 times 8 x 2 ident
344 times 7 x 2 ident
14663 times 6 x 2 ident
392447 times 5 x 2 ident
6484995 times 4 x 2 ident
65986572 times 3 x 2 ident
399348687 times 2 x 2 ident
1308310595 times 1 x 2 ident

1826278222 cases
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